Enrich

Other Sequences

- **1. SQUARE NUMBERS** A square number can be modeled by using an area model to create an actual square.
 - **a.** Draw the next two figures in the sequence and determine the fourth term.

- **b.** The function rule that describes square numbers is n^2 . Write this function rule using multiplication.
- **c.** Complete the table by finding either the missing position or the missing value of the term for square numbers.

Position	3			11	13	15	25
Value of Term	9	64	100			225	625

2. TRIANGULAR NUMBERS A triangular number can be modeled by using manipulatives or objects to create triangles. The first three triangular numbers are 1, 3, and 6.

- a. Draw the next three figures in the sequence in the space above.
- **b.** What is the ninth term?
- c. The function that describes the triangular number sequence is
 - $n \times ----$, where *n* is the position number. Complete the table by

finding either the missing position or the missing value of the term for triangular numbers.

Position	3		8	10	15	20	25
Value of Term	6	10			120	210	